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NOTES 

Heterogeneous Hydrodeoxygenation of Ketones and Alcohols on 
Sulfided NiO-Mo0&A1203 Catalyst 

The conversion of ketones and alcohols 
into the corresponding hydrocarbons is an 
important reaction in organic chemistry. 
This transformation often requires multi- 
step procedures and new improved meth- 
ods are always of interest. 

Methods based on heterogeneous hydro- 
deoxygenation (HDO) of ketones and alco- 
hols on a Ni/A1203 catalyst were recently 
proposed by Maier er al. (I, 2), but, as 
mentioned by the authors, the major draw- 
back was a lack of reactivity of strained or 
sterically hindered ketones. Single-metal 
sulfides can also be used as heterogeneous 
catalysts (3) for the transformation of ke- 
tones and alcohols into hydrocarbons, but 
they require drastic experimental condi- 
tions (temperature 2 3OO”C, hydrogen pres- 
sure 1 100 bar). 

Taking into account this previous work 
on the catalytic properties of supported 
metals and metal s&ides, we have tested 
the hydrodesulfurization catalyst, sulfided 
NiO-MoOJy-A1203, in HDO of a represen- 
tative collection of ketones and alcohols 
and have used a temperature of 250°C and a 
hydrogen pressure of 40 bar. Experiments 
were carried out in a 0.3~liter stirred auto- 
clave (Autoclave Engineers type Magne- 
Drive), operating in a batch mode and 
equipped with a system for sampling of liq- 
uid during the course of the reaction. The 
HDS catalyst used was Procatalyst HR 346, 
which has the composition: 3% NiO, 14% 
Mo03, and 83% A1203. It was stided at 
atmospheric pressure using a fluidized-bed 
technique with a gas mixture of 15% H# 
and 85% Hz by volume (gas flow 120 ml/ 
min) with temperature being raised from 20 
to 400°C at 8”C/min and then held at 400°C 
for 4 h. Analyses were performed on a Gir- 

de1 3000 gas chromatograph equipped with 
a flame ionization detector and using nitro- 
gen as carrier gas. Three types of column 
were used: OV 17 (3% on Chromosorb Q 
80/100, 3 m x & in.); SE 30 (10% on Chro- 
mosorb WHMDS 80/1OO, 3 m x 6 in.), 
and squalane (20% on Chromosorb 
PANDMCS, 5 m x Z$ in.). Products were 
identified by comparison with authentic 
samples. Rate constants were deduced 
from experimental curves by curve fitting 
and simulation using an HP computer 
equipped with an HP 9826 A tracing table. 

The experimental results (see Table 1) 
show that an industrial catalyst such as sul- 
fided NiO-MoOj supported on y-alumina 
can achieve transformation of ketones and 
alcohols into corresponding hydrocarbons 
in nearly quantitative yield, with a better 
reactivity than that observed by Maier et al. 
(2) in the case of cyclopentanone and 2- 
norbornanone and under less drastic exper- 
imental conditions than those reported by 
Weisser and Landa (3). 

The first step for the conversion of ke- 
tones into hydrocarbons is the hydrogena- 
tion of the ketone to the corresponding al- 
cohol which was shown to be the 
rate-determining step of the overall pro- 
cess. For the transformation of alcohols 
into final hydrocarbons, two ways have to 
be considered depending on the possibility 
of alcohol dehydration: 

(i) If alcohols can undergo dehydration 
(entries 1 to 4 in Table l), they are dehy- 
drated to an olefin which is then reduced to 
a saturated hydrocarbon. This mechanism 
is usually postulated in hydrotreating pro- 
cesses, particularly in the hydrogenation of 
dcohols on polyfunctional sulfided cata- 
lysts, the source of protons needed for the 
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NOTES 

TABLE 1 

Hydrodeoxygenation of Ketones and Alcohols on Sulfided NiO-Moo&y-A&O3 Catalyst 
(T = 25O“C;pa, = 40 bar) 

Entry Compound 

1 2-Octanone 
2 Cyclopentanone 
3 Cyclohexanone 
4 2-Norbomanone 
5 Adamantanone 
6 Benzophenone 

7 I-Adamantanol 
8 2-Adamantanol 
9 Diphenylmethanol 

4” 
(min-I g . cat.-‘) 

Final product 

5.1 x 10-2 n-Octane 
5.4 x IO-2 Cyclopentane 
5.3 x 10-2 Cyclohexane 
2.6 x lo-* Norbomane 
6.6 x 10-Z Adamantane 
4.4 x 10-2 Diphenylmethane 

91 x 10-z Adamantane 
28 x 10-2 Adamantane 
39 x 10-Z Diphenylmethane 

Yield % 

95 
90 
95 
95 
90 
90 

90 
90 
95 

0 Rate constants of disappearance of ketones (entries 1 to 6) or alcohols (entries 7 to 9). 

process being the acid surface of the sul- 
fided catalyst (3). Under the experimental 
conditions reported in this work, olefin is 
barely detectable; however, at lower tem- 
perature (175”C), olefin was shown to be an 
intermediate. From our results, the possi- 
bility of direct hydrogenolysis of the C-OH 
bond cannot be definitely ruled out. 

(ii) If alcohols cannot undergo dehydra- 
tion (entries 5 to 9 in Table 1) because of the 
implications of Bredt’s rule, the C-OH 
bond is directly hydrogenolyzed to give the 
corresponding hydrocarbon. 

Numerous investigations have aimed at 
establishing the mechanism of hydrogena- 
tion of ketones in the liquid phase leading to 
an overall conception based on the general 
scheme represented by the Horiuti-Polanyi 
type of reaction mechanism (4-7). Most of 
these investigations were carried out by us- 
ing supported metals or metal sulfides and, 
to our knowledge, no kinetic data are avail- 
able on supported bimetallic sulfided cata- 
lysts. 

From this preliminary study, three points 
are noteworthy: 

(i) The rate constants of hydrogenation of 
ketones on a supported bimetallic sulfided 
catalyst do not vary significantly for the 
compounds studied. This behavior con- 

trasts with the hydrogenation of ketones on 
Pt/SiOz or Ru/SiOz where the rates of hy- 
drogenation depend on the ring size (5). 

(ii) We have observed a lesser selectivity 
in the hydrogenation of 2-norbornanone 
into endo- and exo-Znorbornanols (65% 
endo and 35% exo) on sulfided NiO-Moo,/ 
~-A1203 than in reduction on metal catalyst 
(4). Such a lesser selectivity is frequently 
observed with sulfided catalysts (3). 

(iii) The rate constants of direct hydro- 
genolysis of alcohols are of the same order 
of magnitude. This reaction is expected to 
behave like hydrogenolysis of alcohols on 
oxide-supported metals (2, 8, 9), i.e., 
through the formation of carbenium ion in- 
termediates, because of the relative acidity 
of the catalysts. There is no evident rela- 
tionship between the rate constants and the 
stability of carbenium ion intermediates in 
the rate-determining step because diphenyl- 
methanol should give a more stable carbe- 
nium ion than either l- or Zadamantanol 
and the rate of hydrogenolysis is not partic- 
ularly enhanced. 

Experimental work is under way to ob- 
tain results which should enable the mecha- 
nism of hydrodeoxygenation of ketones and 
aicohols to be defined. Nevertheless, the 
main feature to be noted is the easy conver- 
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sion of ketones and alcohols into corre- 
sponding hydrocarbons on a sulfided indus- 
trial catalyst in nearly quantitative yield. 
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